3.6. Гидравлический удар. Электрогидравлический удар

Быстрое перекрытие трубопровода с движущейся жидкостью вызывает резкое повышение давления, которое распространяется в виде упругой волны сжатия по трубопроводу против течения жидкости. Эта волна сжатия несет с собой большую энергию, получаемую за счет кинетической энергии жидкости.

Подход волны к какому-либо препятствию (изгибу трубопровода, задвижке и т.д.) вызывает явление гидравлического удара.

Ослабление гидравлического удара может быть достигнуто или увеличением времени перекрытия, или же включением каких-либо демпферов, поглощающих энергию волны. Для увеличения силы удара целесообразно применять жидкость без неоднородностей и мгновенные перекрытия.

Волны сжатия в жидкости возникают также при различного рода взрывных явлениях в движущейся или покоящейся жидкости (глубинные бомбы).

Волну сжатия в жидкости возможно вызвать также мощным импульсным электрическим разрядом между электродами, помещенными в жидкость (электрогидравлический эффект Юткина) (См., например Юткин Л.А., Электрогидравлический эффект, Машгиз, 1955).

Обычно вслед за гидравлическим ударом следует удар кавитационный, возникающий из-за понижения давления за фронтом ударной волны сжатия (о кавитации см. раздел 6).

Чем круче фронт электрического импульса, чем менее сжимаемая жидкость— тем выше давление в ударе и тем «бризантнее» электрогидравлический удар.

Электрогидравлический удар применяется при холодной обработки металлов, при разрушении горных пород, для деэмульсации жидкостей, интенсификации химических реакций и т.д.

Нижеприводимые **примеры** наглядно иллюстрирует широту области применения электрогидравлического эффекта.

A.c. № 147162:

Способ штамповки, вытяжки гибко-листовых пластических материалов, отличающийся тем, что

указанные операции осуществляют действием электрогидравлических ударов, возникающих в открытом или закрытом сосуде, днищем, стенной или крышкой которых служит обрабатываемый материал.

Это наглядный пример того, как одной формулировкой можно охватить широкий круг задач.

Одновременно эта формулировка демонстрирует универсальность метода.

A.c. № 147917:

Способ восстановления размеров полых деталей машин и других изделий, например поршней, пальцев, валов и т.п. раздачей или обжатием их до требуемых и заданных формой или калибром размеров,

отличающийся тем, что

@Горин Ю.В. Указатель физических эффектов и явлений для использования при решении изобретательских задач. http://www.jlproj.org

эти операции осуществляют действием электрогидравлических ударов на разрядниках, размещаемых в жидкости вне или внутри изделия.

Патент США 3566447:

Формование пластичных тел при помощи гидравлического удара высокой энергии. Патентуется гидродинамическая система, в которой столб жидкости, находящийся в баке гидро-пушки, направляется на заготовку. Для приведения жидкости в движение в указанном столбе жидкости производят электрический разряд, в результате чего генерируется направленная на заготовку ударная волна, которая в сочетании с собственным высоким давлением жидкости осуществляет деформацию заготовки. Скорость струи, направляемой на заготовку, составляет от 100 до 10 000 м/ сек.

Согласно **авторскому свидетельству №167416** энергия гидравлического удара используется для пробивки групповых близкорасположенных отверстий в толстолистовом материале. Авторы применили обычный гидравлический удар, использовав для одновременной передачи импульса воду.

Было бы интересно рассмотреть ту же конструкцию, использовав электрогидравлический удар в той же самой воде.

В А.с. 287860 также применен гидравлический удар, а именно:

Способ промывки скважины от осадка с использованием шлакоуловителя и облегченного промывочного агента,

отличавшийся тем, что, с целью более полной очистки забоя скважины от ocadka

промывочный агент закачивают в скважину, и создают перепад давления между затрубным и внутритрубным пространствами, который затем реализуют в качестве гидравлического удара, направленного в сторону забоя, путем мгновенного снятия противодавления.

И снова: может быть, электрогидравлический удар выгоднее? Тем более, что можно воспользоваться системами электродов, примененными для электротермического воздействия на нефтяные пласты (см, напр., Джуварлы Ч.М. и др., Электротермическое воздействие на нефтяные пласты, Баку, 1965).

В А.с. № 179738 предлагается применить электрогидравлический удар для трамбовки или забивки свай; применение электрогидравлического удара позволяет создавать трамбующие рабочие органы с принудительным ударом; применение подобной идеи, по мнению авторов, поможет создать малогабаритные и высокопроизводительные машины для копания мерзлых грунтов, скалывания льда и т.д.

Ударная волна, возникающая в воде при быстром испарении металлических стержней электрическим током (см. ниже А.с. №129945) вполне пригодна для разрушения валунов и других крепких материалов, для разбивки бетонных фундаментов, зачистки скальных основании гидротехнических вооружений и других работ, связанных с разрушением.

@Горин Ю.В. Указатель физических эффектов и явлений для использования при решении изобретательских задач. http://www.jlproj.org

В США эффект Юткина применен для очистки электродов от налипшего на них при электролизе металла (ИР-68-1), в Польше - для упрочнения стальных колец турбогенераторов. При этом стоимость операций, как правило, сильно снижается.

Приведенные примеры иллюстрируют применение эффекта. Ниже даны примеры того, каким способом можно получить или усилить электрогидравлический удар.

В японском патенте 13120 (1965) описан способ электрогидравлической формовки ртутно-серебряными электродами. При применении таких электродов сила ударной волны в воде возрастает, так как к давлению плотной плазмы, образующейся в канале разряда, прибавляется давление паров ртути; соответственно, можно уменьшить емкость конденсаторной батареи.

A.c. 129945:

Способ получения высоких и сверхвысоких давлений для создания электрогидравлических ударов,

отличающийся тем, что

высокие и сверхвысокие давления в жидкости получают путем испарения в ней действием импульсного разряда токопроводящих элементов в виде проволочки, ленты или трубки, замыкающие электроды.

A.c. 119074:

Устройство для получения сверхвысоких гидравлических давлений, предназначенное для осуществления способа по авторскому свидетельству № 105011, выполненное в виде цилиндрической гидравлической камеры, сообщенной одним концом в трубопроводом, подающем жидкость, а другим — с ресивером,

отличающийся тем, что с целью создания электрогидравлических ступеней сжатия

применены искровые промежутки, располагаемые по длине камеры на определенном расстоянии друг от друга.

Заметим, что это авторское свидетельство есть фактически результат применения би-принципа (см. АРИЗ - 71. Дополнительные приемы устранения технических противоречий).